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Abstract-In the present paper a physical-mathematical model for the process of heat and mass transfer 
at the interface of a liquid-vapour system is proposed. On the basis of this model and by means of the 
conservation equations of mass and energy fluxes, the evolution-equations of the state of a single droplet 
in continuum environment are determined. These equations are ordinary non-linear differential equations 
which have been n~e~cally integrated in order to give comparisons with experimental results of other 

authors. 

NOM~~LA~RE 

specific heat ; 
number of degree of freedom ; 
Boltzmann constant; 
latent heat of vapor~tion; 
mass of a molecule; 
numerical density; 
number flux; 
radius of a droplet ; 
speed ratio ; 
temperature; 
incident velocity of a mol; 
drift velocity. 

P, = Y’S; 

v, = dn, ; 
5, = TJT; 

@4 highest velocity in the distribution function 
of the condensing molecules. 

Subscripts 

6 ambient ; 
G critical temperature; 

e, equilibrium ; 
1, incident ; . 
I, liquid-phase; 

r, re-emission ; 

Greek symbols s, solidification temperature. 

= 0 monoatomic gas; 
= 1 biatomic gas ; 
= 3/2 polyatomic gas; 

Superscripts 

Y, vaporization; 

-, condensation. 

THE VAPORIZATION of a spherical droplet into semi-infinite vapour space is a well known diffusion problem 
with free-boundary (the interface between liquid and vapour) and can be studied as a classical Stephan 
problem, see ref. [l J and related bibliography. Moreover when the dimensions of the droplet itself can be 
compared with the mean-fry-path in the vapour a further difficulty arises; in fact the physical-mathematical 
model of the continuum mechanics should be substituted, in the vapour phase, by the Boltzmann equation 
with suitable matching, on the moving boundary, of this equation with the parabolic ones governing the heat 
transfer in the liquid phase. 

In spite of the fact that this problem has been studied by many authors, either with the equations of 
continuum mechanics (see, amongst the others, Nix and Fukuta [2], Vdovin et al. [S], Chien [6] and Torda 
[7]) or with the equations of kinetic theory in rarefied gas conditions (see Matsushita [3] and Bellomo [9]), 
at present the proposed models have a limited range of validity in the sense that they can supply reliable 
results onfy for pr~ominant vaporization in rarefied flow or in conditions of small perturbance from the 
equilibrium ones (see ref. [8]). 

In this paper we shall propose a physical-mathematical model describing the heat and mass transfer of a 
two-phase system. The model is based on a recently proposed phase-transition kinetic theory [9], which has 
given theoretical results very close to the experimental ones, and on the mathematics methods of kinetic 
theory [lo]. The model gives the time-evolution of the state of a droplet in terms of an ordinary non-linear 
differential equation: this equation is here discussed by an analytical and numerical point of view. 

The obtained results are compared with the experimental ones of other authors [ll]. 
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2. PHYSICAL-MATHEMATICAL MODEL OF HEAT AND MASS TRANSFER 

Let us take into account a spherical droplet with radius R and mean inner temperature T, suspended in a 
vapour environment of temperature T, and number density n, The aim of this work is finding: (1) a 
physical-mathematical model describing the heat and mass transfer and (2) an evolution equation, in terms 
of an ordinary differential equation, on the state variables T and R. 

This mathematical modeling can be achieved with the methods of kinetic theory of gases according to the 
following hypothesis: 

The vapour molecules impinge the surface of the droplet with a distribution function of maxwellian 
type with drift velocity: 

fb) 

(cl 

& = n;exp{ - IV- W12/(2k/m. T,)j-. (1) 

In particular, in equilibrium conditions: 

W = 0, T, = T, n, = n,*f, = n;exp{ -V2J(2k/m* T)). (2) 

The number of molecules which condense or vaporize in the unit surface and in the unit time, 
respectively N - and N +, are given as follows, according to {9] : 

N- = Ni.d; N+ = N;i$, I$E[O, 11. (3) 

4 = r&T) is the condensation~vapori~tion function, as it follows from the kinetic theory of phase- 
transition and, according to ref. [9], is assumed to be a function, for a given vapour-liquid pair, only of 
the temperature of the liquid phase. 

(4 The gradients of temperature or density inside the liquid phase are negligible. 

(4 The re-emitted molecules (vaporized or scattered) are in equilibrium at the tem~rature T. 

With regard to these hypotheses let us remark that equation (I) gives a model-solution of the Boltzmann 
equation and, once W, at fixed values of n, and T,, has been found, can give an adequate approximation. 
From equation (I) the unit number and energy fluxes, according to known results of the kinetic theory 
[lo, 121, can be calculated as follows: 

Ni = s IV.nl.fidV = n”(2k/m.T,)“‘*X(s), 
V-n<0 2(a)“2 

Ei = 
i 

jmVZIV~nl.f;dV = ~(2k”.T.)“‘.kT,.fjs). 
V.n40 

s = W/fZk/m . q)“’ ; x = exp(-s2)+(12)1!2.s[I +erf(s)], 

(7r)l’Z 
f‘= (?-l-2+6).x + __ 2 $1 +erf(s)]. 

(5) 

16) 

(7) 

In particular, in equiIibrium conditions [s = 0, II, = n,(T)]. equations (4 and 5) become: 

E, =: ‘I’ -(2kjm.T)“‘-kT.(2+6). 
2(7cp2 

The number fluxes of vaporized and condensed molecules are given by equation (3). where (see [9]): 

4(T) = {exp( -y)- 1 -y}/exp(y); y = y(T) = o(T)/(2k/m. T)1!2, (10) 

y has the physical meaning given in [9], namely all vapour molecules hitting the surface of the liquid 
accommodate in maxw~lIian equilibrium at the temperature of the surface and condense if V < LU, whereas 
they are re-emitted if V > w ; according to [9], y can be calculated from: 

Moreover, according to hypotheses (d) and (e), the re-emitted energy flux is given by: 

E, = N,.kT(2’r6). (12) 
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According to the analytical manipulation of equations (4, 5, 8 and 9) let us now define the following 
dimensionless functions: 

$,z NJN, = ~.r’l’*~; y = n&t,; z = TJT (13) 

t,bE 2 EJE, = y . r3” . f/(2 + 6). 04) 

The equations (4-14) give the heat- and mass-transfer physical model once a mathematical expression for 
the speed ratio s has been found according to the following limiting physical conditions of the system: 

(I) 11 = r = 1* J/N = $E = 13 s = 0 (equiIibrium conditions); 
(2) Vzandy~rx,~~,~N~N,=y.?112, $E~E,/E,=y~r3/2~s-+0 

(condensation with negligible vaporization); 
(3) Vz: and y * 0 * $, = 1//& --* 0 3 s + s,,,*” < 0 (vaporization into vacuum) 

(s is taken negative if the drift velocity is directed from the liquid into the vapour). 

From these limiting conditions it follows that a conceivable model for the speed ratio is to assume s = s(p), 

P=Y 

(0 

r, according to the following further hypotheses: 

when vaporization into vacuum occurs, the drift velocity equals the normai mean velocity; from [12] 
follows: 

(8) 
(h) 

(W 1 

(Zkjm ’ T,)“’ = n”“(2k,‘m. T,)2 s V.n<o 
IV.n/ exp( - VZ/(2k/m* ‘Qf dV = & 

and consequently: 

ds/dpl,, = ,, = 0. 

%nin = - 1/[2(n)“*]. 

Vp > 1+ s >, 0 and 3~* > 0: s(p*) = s,,, = 1/[2(7~)“~]. 

One of the possible functions which is consistent with the previous constraints is the following: 

s = & ($ - l)*exp( -p2/3.62). 

The behaviour of s vs p is visualized in Fig. 1. The set of equations (4-15) gives the announced heat and 
mass transfer model. 

Finally let us calculate the mass and energy fluxes, respectively ON and Q,, from the vapour volume into 
the spherical droplet ; according to equations (3,4, 5, 10 and 12), taking also into account the dimensionless 
quantities of equations (13 and 14), the following expressions can be obtained : 

QN = 4&m(N- -N+) = 47rR2N;~(&- l), (16) 

Q = 4~~2~(~~-~,)+(E- --Et)) = 4~R2~=kT(2+~),[~~~~-l)+(~~-~~)]. (17) 

Equation (17) takes into account the balance between the energy flux due to collisions and the one due to 
mass transfer (condensation-vaporization), with the assumption, according to hypothesis (e), of complete 
accommodation of vapour molecules before re-emissibn or vaporization/condensation at the temperature T 

of the droplet. 

3. EQUATIONS OF EVOLUTION OF A SPHERICAL DROPLET 

Let us consider now a spherical droplet in non-equilibrium conditions in a vapour environment. The state 
of a single droplet is then defined by its radius R = R(r) and by its mean temperature ‘I’ = T(t), while the 
state of the outer system is defined by the temperature T, and the number density no of the vapour in the 
ambient far from the droplet. 

Let us comment that a time variation of T, and n, can be considered as due to changes of the 
thermodynamical state of the outer system itself, without the influence of the presence. of the droplet, small 
compared with the dimensions of the vapour volume corresponding to the droplet. In any case the variation 
of the state of the outer system is of a smaller order compared to the variation of the state of the droplet 
during the observation time of evolution of the droplet itself. 

The equations of evolution of R and T can be obtained by equaling the mass and energy fluxes respectively 
to the following quantities: 

; ($R3 n, - m) = (DN, 

$?iR3n,-mcsg+ (2+B)kT$(fnR”n,)-L(T)i($R3nt.m) = @,. (1% 
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FIG. 4. Evolution of the radius and temperature of a 
spherical droplet (T. = 290 K, y0 = 0.8). 

FIG. 5. Evolution of the radius and temperature of a 
spherical droplet (T, = 290 K, y,, = 1.2). 
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results (ref. [Ill). 



Time-evolution of spherical droplets in vapour environment 809 

In particular equation (18) takes into account the time variation of the mass into a spherical volume, while 
equation (19) takes into account the time variations of heat and collisional energy due to changes of 
temperature, volume and latent heat of vaporization of a spherical droplet. 

The analytical manipulation of equations (16-19) gives the following ordinary differential equations: 

ji = F(x), x = (R, T), F = (F,, F2), (20) 

dR 
- = F, = F,(T), 
dt 

dT 
-=F,=F,(R,T)=F, 
dt 

@lb) 

where: 

’ F, =- 
2(n)“* 

(2/~/m. T)"'v.4(tjN- 1) 

L = L(T), v = v(T)= n,/nl, 

4 = 4(T) given by equation (10); 

$N = t,GN(T) given by equation (13); 

l(lE = J/E(T) given by equation (14). 

The domain D of the variables (R, T) is defined as follows: 

D(,,T, = (0, R,,,). (T,, T,). 

In D, F, and F, are continuous functions derivable in all variables. The equations (21a) and (21b) are non- 
linear and must be numerically integrated in order to have the behaviour of R and T vs time at given initial 
conditions. 

In the next section, however, some analytical solutions will be proposed and discussed. 

4. ANALYTICAL DISCUSSION ON THE MODEL EQUATION k = F(x) 
AND COMPARISONS BETWEEN THEORY AND EXPERIMENT 

The differential equation (20) which describes the model of the time-evolution of a spherical droplet can be 
numerically treated with known techniques of integration (see ref. [13]). 

In particular let us firstly remark the following prdperty: 

Property I: if R > 0 the differential equation (20) is locally Lipschitzian [13] in the sense that: 

R > 0*&,x,, t: IIW,, t)-F(x,, t)ll < allxl-x,ll. 

The proof is obvious and consequently the problem of the numerical integration is well-posed. 

Taking into account this property, some numerical results are visualized in Figs. (2-5) which show the 
evolution of R and T for four different initial conditions [at fixed r(0) = 7,, and y(O) = yo] which correspond 
to different physical situations. In particular: 

(4 

(b) 

(cl 

(4 

dR dT 
70 > 1, yo < 1 *vt: z < 0, x> 0 (Fig. 2) 

this situation corresponds to evaporative heating. 

dT 
70 > 1, yo > 1 *vt: -& > 0; 3t* > 0: Vts[t*, co] g < 0 (Fig. 3) 

this situation corresponds to condensative heating. 

dT dR 
70 < 1, y. < 1 =+ Vt: dt < 0; 3t* > 0: VtE [t*, co] dt > 0 

this situation corresponds to evaporative cooling. 

(Fig. 4) 

dR dT 
70 < 1, y#J > 1 -vt: --p 0, dt < 0 (Fig. 5) 

this situation corresponds to condensative cooling. 
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The initial conditions play the role defined by the following property: 

Property II: the initial condition R(0) = R, is a scale operator such that: t,/R,, = t,/Roz which implies: 

W,; R ol, W~Rol = R(t,; R,,, T,I~R,, and ‘W,; R,,, %I = 73,; R,,, T,). 

This property is a direct consequence of equation (20) re-written in the form (21a), (21b). Consequently the 
afore-presented calculations can be extended to a wider range of results. 

Besides the above-indicated numerical integration, the problem can be transforms into an equivaalent 
quadrature process, according to the following proposition: 

Proposition: the problem (R,, To),<, -+ (R, T), defined by the differential equations (20) and (21) is equivalent 
to a quadrature problem of the type: (to. R,),$, - (t, R)T, with T independent variable and (R, t) dependent 
variables. 

Proof: let us divide equation (21a) by equation (21b): 

dR 
d- = R.G(T), 

F,(T) 
G(T) = ~ 

g(T) 

the first equation gives: 

R 

F = exp 0 

122) 

(23a) 

by substituting this result in equation (21b) and by integrating: 

(t-to) = HdT= i(T; To); H(T) = R,.<(T; T,)/gV) 123b) 

which proves the proposition. 

Remark I: the transformation of problem (20) into a quadrature problem gives a direct information of the 
bounds of approximation on R and T, according to the quadrature algorithm [13]. 

Remark II: the quadrature indicated by the proposition can lead to analytical solutions of problem (20) in 
terms of an expansion of G and H, and consequently to an analytical integration, if G and H are n- 

derivable functions of T: 

G(T) ~ G(To)+~i~ 
(T- ToI 
~ 

f dT’ .r=Tcr i! 

H(T) 2 H(T,)+i;,% 
(T-T,)’ 
---. 

1 dT’ T=TI, i! 

According to this expansion equations (23a), (23b) become: 

G(To).(T-To)+ii% 
(T- To)‘+’ 

I dT’ T=T<> (if I)! 

(t-q,) 2 H(To).(T-To)+&d’Hj 
i+l 

EIL. 
1 dT’ T=To (i+l)! 

(24a) 

Pb) 

(25a) 

Pb) 

Remark III: if the system is not close to equilibrium conditions (tiN, $a # l), the derivability of G and H is 
directly verified according to the structure of the auxiliary functions appearing in G and If. 
In the author’s opinion a numerical testing of the procedure can show the convergence of the solution in 

terms of power expansion; an analytical discussion of the convergence of the serial expansion would 
introduce a large amount of analytical and numerical work unnecessary towards the real objectives of this 
paper. 

The results of this testing are indicated in Figs. (6 and 7), which show respectively R/R, and T vs I in the 
above-mentioned case (a). The dotted lines represent the results of the quadrature process for a truncated 
expansion of G and H, while the black lines represent the correspondent numerical results already shown in 
Fig. (2). Let us comment that even a second order expansion gives successful results. 

Finally in Fig, (8) some comparisons, at different initial temperatures, between the proposed theory and the 
experimental results of ref. {ll], f or a water dropfet of 1 urn diameter injected into vacuum, are shown. Let us 
remark that this comparison is quite successful, also considering that the chosen environmental conditions 
are the limit ones for the proposed model. 
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5. DISCUSSION 

811 

In the present work a heat and mass transfer model at the interface of a liquid-vapour system has been 
proposed starting from a general theory of phase transition [9]. The model has been mathematically 
determined with the aid of a set of auxiliary functions tiN, $E and s by imposing some limiting conditions due 
to the physical behaviour of the system [see points (l), (2), (3), (f), (g) and (h) of the second section]. The said 
model has been then applied to the analysis of the time-evolution of a spherical droplet (in non-equilibrium 
conditions) in a vapour environment. 

Let us remark that the proposed model can be extended to a wider range of physical situations of the 
system. In particular: 

(1) if the liquid-phase has a motion with velocity V in the vapour medium, this effect can be taken into 
account by changing equation (15) in the following form: 

(2) it may be taken into account a time variation of the state variables of the outer ambient, n, = n,(t) and 
T, = T,(t), as already mentioned in section 3. 

Let us also remark that it is important to construct evolution models in terms of an ordinary differential 
equation. This is because in the most of the physical problems the system is n.ot constituted by only one 
droplet but by a large number of them, and therefore also the distribution function on the state of the object 
must be determined (see the discussion in [4] referred to the case of droplets in rarefied environment). In 
particular this model has been applied for the study of the dynamics of fog, see [ 141; in fact for the study of 
such a system it is necessary to know the law of evolution of the droplets belonging to the system itself. 

Finally let us note that the problem of time-evolution of liquid droplets is an open area of research, as also 
indicated in very recent contributions such as [15], and the proposed model can contribute to construct a 
valid theoreti‘cal basis for the related class of physical problems in fluid dynamics. 
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Nazionale per la Fisica Matematica. 
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MODELE PHYSICO-MATHEMATIQUE DE L’EVOLUTION TEMPORELLE DE 
GOUTTELETTES DANS UN ENVIRONNEMENT DE VAPEUR 

R&sum&Dans cette ttude, on propose un modele physico-mathtmatique du m&canisme de transfert de 
masse et d’inergie au travers d’une interface liquide-vapeur. 

En utilisant ce modele et les lois de conservation de la masse et de l’energie, on a irtabli les kquations 
d’tvolution de l’ktat d’une goutte dans un milieu continu de vapeur. On aboutit & des equations 
diff&entielles non-1inCaires qui ont &tt int&grt+es numbiquement ; les resultats obtenus sont comparts ri 

des resultats exp&mentaux d’autres auteurs. 
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ZEITLICHE AUSBINDUNG SPHARISCHER TROPFEN IN EINER DAMPF-ATMOSPHARE. 
EIN PHYSIKALISCH-MATHEMATISCHES MODELL 

Zusammenfassung-In der vorliegenden Arbeit wird ein physikalisch-mathematisches Model1 fur den 
Warme- und Stoffubergangsvorgang an der Grenzflache eines Dampf-Fliissigkeitssystems vorgeschlagen. 
Auf der Grundlage dieses Modells und mit Hilfe der Erhaltungssltze von Massen- und Energiestromen 
werden die Gleichungen fur die Ausbildung des Zustandes eines einzelnen Tropfens in einem Kontinuum 
bestimmt. Diese Gleichungen sind gewohnliche, nichtlineare Differentialgleichungen, die numerisch 
integriert wurden, urn Vergleiche mit den experimentellen Ergebnissen anderer Autoren zu ermoglichen. 

POCT CQEPMYECKMX KAfIEJIb B CPEAE I-IAPA. @MWKO-MATEMATW’JECKA5I 
MOAEJIb 

AIIHOIWWM - B cTaTbe npennoxeHa QHwio-MaTe.eMawwcxan h4onenb npouecca Tenno- H Macco- 
nepewca Ha rpamtue pasnena cHcTerdbl xwwocndap. Ha ocHone s~oii h4owni H c nordouwo 
yF%WSHWUiii COXpaHeHHX IIOTOYOB MaCCbl H 3HePrHH BbIB&?AeHtJ 3BOJllOUHOHHble )‘pBHeHHn COCTORHHIl 

AJIn eAHHW4HOfi YallJlH B CMOIIlliOfi CpI2.A.E. 3TH )‘pZlBHeHHX, Z4BJl~tolLWCSl 06WHbihfH HeJlHH&HblMH 
AH@,R~HUH&“bHbDdH ,‘~,,HeHHnMH, 6bLIIH IlpOHHTeTpHpOBiUibl %KJICHHO AAR C&UBHeHHR C 3KCllepH- 

MeHTaJlbHblMH AaHHblhlH Ap)‘rHX i3BTOpB. 


